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Abstract.Large scale long time experiment is carried out in situ on foundations of hydro 
power station located on soft soil. Loading assessment and analyses of recorded response 
are developed. Foundation load may bee varied from quasi static to strong motion 
regimes. AE spectra configuration is the same in quasi static and slow dynamic and its 
energy carried frequency show frequency shift by loading-unloading. AE spectra are 
high sensitive to static load changes. By regime strong motion in some measurement 
points fracture opening are observe. Development of AE as the sum of the nonlinear 
resonance frequencies of fractals and cracks under dynamic loads is discussed. 
Experiment results future applicability may bee in non destructive nonlinear testing of 
large objects in-situ and in modeling fractured media response to long time dynamic 
with goal to estimate dynamic loading time and amplitude limits for intensification of 
filtration of fluids through porous media. 
 

INTRODUCTION 
 
The non-linear methods of investigating the earth's crust were rapidly 
developed in the recent decades; soft soil, rocks, concrete cracked and  
fractured massifs were under research. The non-linear methods of analysis  
of response require a medium with a clearly expressed non-linearity.  
 The requirement of the practice of forecast and analysis of the response of  
cracked media to dynamic loading - this is the main stimulus of concentration  
of attention to intensive studies of non-linear processes [1] in these media. 
Information about the non-linear phenomena in geophysics was accumulated 
from the last quarter of the past century [3, 4] during the study of the propagation  
of waves in the earth's crust, in the grainy media, with the vibration  
action to the earth's crust and with studies of strong earthquakes. Concrete 
belongs to the class of non-linear materials, beginning from a certain stage of  
hardening [6]. Non-linear wave methods for the examination of  
damage in materials are the new frontier of acoustical non-destructive  
testing [6,8]. As practice shows, in the process of operation concrete is  
cracked and it becomes an ever more non-linear material. The non-linearity of 
concrete plus the non-linearity of soil [2] under it not only complicates the task, 
but also considerably increases practical interest in it, that also made us use the 
non-destructive testing methods of non-linear acoustics. They are the only and 
unique methods, which are able to clear up the complex spectral picture of the 
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response. The evaluation of changes in the foundation after the boosting regimes 
and recommendations regarding the selection of the saving regimes with the 
daily operation - these are the primary tasks of this investigation. 
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FIGURE 1. There are 23 MPs (measurement points) in the MPG (measurement  
point gallery); their locations and configuration are shown on Fig. 1(a). Cross- 
section of the dam along the axis of a hydraulic turbine generator in the flow  
direction, Fig.(1b). 

 
Measurements 

 
Measurement location.  

 
The work was carried out investigating foundation concrete structures of an 
operational hydroelectric power station, site and setup description was published 
in[2], in short form it is seen in Fig.1. 
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FIGURE 2 (a) Surface wave propagation velocity along the MPG. (b)  Response RMS by 

overflow in 23 MP 
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The surface wave propagation velocity along the gallery is distributed as given in 
Figure 2(a). Vertical polarized Rayleigh wave propagation velocity is measured 
between MPs and it is within 1850-3200 m/s.   The latter reflects the fractures 
inside the concrete body (the less is the wave velocity, the higher is the crack 
concentration). Propagating impulse spectral changes allow to assess the fracture 
size. Measurements are made in silence. 

 
Equipment. 

 
The following equipment was used during the work: 8 accelerometers  
manufactured by Wilcoxon Research, a SONY 8-channel digital data recorder,  
type PC208A, an 8-channel data analysis software PCscan MKII and a 
specialised 8-channel spectrum analysis programme. In some cases, a  
one-channel data collector-analyser CMVA55 and vibration sensor manufactured 
by SKF Condition Monitoring were used, allowing carrying out the signal 
analyses in situ. The data analyses of all kinds were aimed at determining 
 vibration acceleration. 
 

Load assessment 
 

Dynamic load assessment is made for future analysis of response spectra within 
the framework of non-linear elasticity. 

 
Quasi-static realization: the power station foundation is 200 m long and it is 
based on soft soils and preloaded with total vertical stress approximately 350 
kPa. In the basement of the foundation, there are silty-clayey and clayey-silty 
soils with non-uniform settlement and non-uniform relaxation time. All 
hydroelectric generators are idle. Static stressed state of the foundation changes 
with the change of the previous history of grouping of working hydroelectric 
units and duration of their work. The possible explanation for that phenomenon: 
the impact of vibrations of the working hydroelectric unit acts on the bearing 
capacity of weak soil directly under the unit, as well as the difference in  
consolidation time for clayey sand and sandy clay. That means that the relaxation 
processes take place in a different way, and the process of consolidation of weak 
soils is at a different stage under each unit, causing slow and weakly changing 
stress in the body of the foundation. Thus, in the “silent” regime, the conditions 
of “quasi-static” loading of the dam foundation due to relaxation processes are 
complied with.  
• response RMS in MP = 0.001 – 0.004 g 
 
Slow dynamic realization: Working some hydroelectric generators. 
• response RMS in MP = 0.002 – 0.02 g 

114



 

 
Strong motion realization : Working 10 hydroelectric generators + water 
overflow 
• response RMS in MP = 0.02 – 0.08 g 
• assessment of the emitted and dissipated energy: 25-73 MJ 
 
Response RMS of the foundation by overflow 
 
RMS vibration accelerations by overflow (Fig.2b) (0.02 – 0.08) g, corresponding 
to: a strong or very strong earthquake (Force 5-7) on the seismic scale of the 
Institute of the Earth Physics (Moscow), slight to medium on the Richter 
scale, Force 3-4 on the Mercalli scale. 
 
Based on approximate estimates, the maximum lost energy, which is, 
consequently, 1% from the generated energy, the possible seismic event  
comprises 25-73 MJ with all the units in operation plus water discharge  
that corresponds to a slight to medium earthquake. The bulk of the energy  
was emitted in the high frequency range – (1- 4) kHz, thus ensuring that the  
event is local. There still remained a possibility of the excitation of the  
medium by high-frequency energy, which later is emitted in the low-frequency  
range. 

 
Measurement results and analysis 

What do we measure?  
 

Two little simple experiments on the samples (diameter 7 cm, length 40 cm)  
of foundation concrete give an answer to that question. The sensor is glued on 
the one end (cross section) of the specimen, see Figure 3. 

 
Experiment 1 

  
Compression of a sample in metal clamps acts from two sides in the middle of 
the specimen length; The response contains the low-frequency part - sample 
oscillations and the high-frequency part. It is shown in Fig. 3 (b). The high-
frequency area is caused by friction of metal about a granular surface of 
concrete, that is acoustic emission (AE). AE frequencies depend on the pressure 
on a sample and on amplitudes of sample low-frequency oscillations. 

 
Experiment 2 

 
Two samples are in contact with the end of a rough surface. They are squeezed 
manually. Response spectra are shown in Fig. 3(a). The dynamic contact metal - 
concrete is absent, see Fig. 4. The high-frequency area is caused by friction 
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granular surfaces of concrete against concrete that is acoustic emission (AE). AE 
frequencies depend on the pressure between the samples and on amplitudes of 
sample low-frequency oscillations. 
 
 

 

(a) 

 

 
 
 

(b) 
FIGURE 3 (a) Response spectra: two samples are in contact with the end of rough surface.(b). 
Response spectra: compression of a sample-pressure is transferred through metal tips and acts 
from two sides in the middle of specimen length. In both cases the gauge is glued on one end face 
of one specimen  
 

 

 
.  

FIGURE 4 The collector-analyzer CMVA55 was used. Sensor is glued on one end  of the 
specimen 
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We measure the wide range response spectra. The response contains the low 
frequency part – the part of foundation oscillations and the high-frequency part, 
caused by friction of metal over concrete against the granularar surface concrete, 
that is acoustic emission (AE). 
  

Detailed response analysis in MPs 
 

Figure 5(a) gives a comparison of spectra V17 of the response in silence before 
(18-Mar -04) and after (14-May-04) floods of 2004, the same forV18 on fig.6. 
Fig. 5 (b), (c) show V17 response spectra development from 2003 to 2005 in two 
frequency bands. Fig.5 (d) shows the response strength growth. By the 
application of maximum loading 16-Mar-2004, resonance occurred. Real 
response in MP, Fig. 5, and response in laboratory experiment, Fig. 3 (a, b) are 
similar, only in situ energy-carrying frequencies are in the range (2000– 5000) 
Hz, but low-frequency oscillations (0.3 – 1000) Hz exist at low amplitudes. It is 
explained simply: a laboratory sample is extracted from a borehole in solid 
concrete, MPs in situ are located in cracked concrete and close to cracks. High 
signal level is obtained from there, the source of which is friction of crack edges. 
 

Response analysis simultaneously in 23 MPs. 
 
 
 Informatively, V,P,T spectra from 23 MP considerably expands and deepens the  
research. It is possible to track the resonances arising in iron rods of Ferro-
concrete, and their distribution in space, on distance some tens meter. In a 
concrete body, it is possible to single out volume into some hundreds cubic 
meters, which oscillates as a single whole on the nonlinear resonant frequency. 
Volume border cracks on three dimensions in space create it. For great volumes 
it is required to enter significant energy into system that these oscillations in 
 general have occurred. 
 

Summary 
 
The purpose of the publication is to show an opportunity of a method of 
auscultation of an object with the subsequent analysis of the recorded signals,  
applying latest developments in the theory of non-linear dynamic elasticity and  
in acoustic emission. The simple and non-destructive mode of detailed research 
and monitoring of so big an object needs future development. It is necessary to 
have 3D visualisation of accumulated spectra and detailed laboratory 
experiments for the exact assessment of the interdependence of the emitted 
frequencies of the material and the applied stress for the object under 
investigation. 
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 (a)       (c)  
  
 

 
  (b)      (d) 
FIGURE 5.  (a) Comparison of spectra of the response in silence before (18-Mar -04) and after 
(14-May-04) the floods of 2004. (b), (c) Response development in V17 (MP17). 7 measurements 
were made: 1) 15-Apr -03 - silence, 2) 27-May-03 8 HG worked, 3) 18-Mar-04 - silence, 4) 29- 
Mar-04 –10 HG + 2  overflow, 5) 1-Apr-2004 (in the report it is 16-Mar-2004 but it is operator’s 
mistake) -10 HG + 3 overflow (it is the maximum dynamic load), 6)14-May-04 - silence, 7) 27-
May-05 - 10 HG worked, (d) Response spectra on maximum load, 2005 and equivalent load + 
overflow, 2004. 
 

 
 

Figure 6. V18 till and after floods 2004  Analyze in details two silences /High pressure drop 
down as results of strong oscillations. Q-factor is changed. Additional 2 max. in low frequency 
range are seen 
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